Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2312027, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252915

RESUMEN

Calcination is a solid-state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high-performance cathode materials. Here, correlative in situ X-ray absorption/scattering spectroscopy is used to investigate the calcination of nickel-based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2 . Combining in situ observation with data-driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low-temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally-ordered layered phase upon full lithiation but remains small in size. Subsequent high-temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination.

2.
Nat Commun ; 15(1): 430, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38199989

RESUMEN

Lithium-ion batteries play a crucial role in decarbonizing transportation and power grids, but their reliance on high-cost, earth-scarce cobalt in the commonly employed high-energy layered Li(NiMnCo)O2 cathodes raises supply-chain and sustainability concerns. Despite numerous attempts to address this challenge, eliminating Co from Li(NiMnCo)O2 remains elusive, as doing so detrimentally affects its layering and cycling stability. Here, we report on the rational stoichiometry control in synthesizing Li-deficient composite-structured LiNi0.95Mn0.05O2, comprising intergrown layered and rocksalt phases, which outperforms traditional layered counterparts. Through multiscale-correlated experimental characterization and computational modeling on the calcination process, we unveil the role of Li-deficiency in suppressing the rocksalt-to-layered phase transformation and crystal growth, leading to small-sized composites with the desired low anisotropic lattice expansion/contraction during charging and discharging. As a consequence, Li-deficient LiNi0.95Mn0.05O2 delivers 90% first-cycle Coulombic efficiency, 90% capacity retention, and close-to-zero voltage fade for 100 deep cycles, showing its potential as a Co-free cathode for sustainable Li-ion batteries.

3.
Nat Commun ; 14(1): 3678, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344449

RESUMEN

Fluorides have been identified as a key ingredient in interphases supporting aggressive battery chemistries. While the precursor for these fluorides must be pre-stored in electrolyte components and only delivered at extreme potentials, the chemical source of fluorine so far has been confined to either negatively-charge anions or fluorinated molecules, whose presence in the inner-Helmholtz layer of electrodes, and consequently their contribution to the interphasial chemistry, is restricted. To pre-store fluorine source on positive-charged species, here we show a cation that carries fluorine in its structure is synthesized and its contribution to interphasial chemistry is explored for the very first time. An electrolyte carrying fluorine in both cation and anion brings unprecedented interphasial chemistries that translate into superior battery performance of a lithium-metal battery, including high Coulombic efficiency of up to 99.98%, and Li0-dendrite prevention for 900 hours. The significance of this fluorinated cation undoubtedly extends to other advanced battery systems beyond lithium, all of which universally require kinetic protection of highly fluorinated interphases.

4.
Chem Commun (Camb) ; 56(53): 7317-7320, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32478354

RESUMEN

A fluorine-substituted ionic liquid based on a pyrrolidinium cation and a bis(fluorosulfonyl)imide anion was synthesized using a facile one-step reaction. The resulting ionic liquid is highly pure and when dissolved with LiFSI, the IL-based electrolyte showed good compatibility both in Li and graphite anodes, and superior voltage stability is demonstrated in a LiNi0.5Mn0.3Co0.2O2 cell.

5.
ACS Appl Mater Interfaces ; 12(20): 23035-23045, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32338860

RESUMEN

Nonaqueous electrolyte has become one of the technical barriers in enabling Li-ion battery comprising of a high voltage cathode and high capacity anode. In this work, we demonstrate a saturated piperidinum bis(fluorosulfonyl)imide ionic liquid (IL) with a LiFSI salt not only supports the redox reaction on the cathode at high voltages, but also shows exceptional kinetic stability on the lithiated anode as evidenced by its improved cycling performance in a NMC532/Si-graphite full cells cycled between 4.6 and 3.0 V. On the basis of the spectroscopic/microscopic analysis and molecular dynamics (MD) simulations, the superior performance of the cells is attributed to the formation of solid-electrolyte-interphase on both electrode as well as unique solvation structure where a deadlocked coordination network is established at the saturated state, which prevents transition metal dissolution into the electrolyte via a solvation process.

6.
Phys Chem Chem Phys ; 18(16): 10846-9, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27040896

RESUMEN

Fluorinated carbonates are pursued as liquid electrolyte solvents for high-voltage Li-ion batteries. Here we report aggregation of [Li(+)(FEC)3]n polymer species in fluoroethylene carbonate containing electrolytes and scrutinize the causes for this behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...